lunes, 8 de noviembre de 2010

Diagramas esfuerzo deformación para materiales comunes

Se determinan en forma experimental. Numéricamente todos ellos tiene su propia gráfica y pendiente. El punto final es la falla. Si ellos resisten altas deformaciones se llaman dúctiles, si no frágiles.
Punto A: Hacia abajo es una recta, corresponde al límite de proporcionalidad. La pendiente hacia abajo es el módulo elástico E. El punto B es la resistencia última del material




Los sólidos deformables difieren unos de otros en su ecuación constitutiva. Según sea la ecuación constitutiva que relaciona las magnitudes mecánicas y termodinámicas relevantes del sólido, se tiene la siguiente clasificación para el comportamiento de sólidos deformables:

Comportamiento elástico, se da cuando un sólido se deforma adquiriendo mayor energía potencial elástica y, por tanto, aumentando su energía interna sin que se produzcan transformaciones termodinámicas irreversibles. La característica más importante del comportamiento elástico es que es reversible: si se suprimen las fuerzas que provocan la deformación el sólido vuelve al estado inicial de antes de aplicación de las cargas. Dentro del comportamiento elástico hay varios subtipos:
Elástico lineal isótropo, como el de la mayoría de metales no deformados en frío bajo pequeñas deformaciones.
Elástico lineal no-isótropo, la madera es material ortotrópico que es un caso particular de no-isotropía.
Elástico no-lineal, ejemplos de estos materiales elásticos no lineales son la goma, el caucho y el hule, también el hormigón o concreto para esfuerzos de compresión pequeños se comporta de manera no-lineal y aproximadamente elástica.
Comportamiento plástico: aquí existe irreversibilidad; aunque se retiren las fuerzas bajo las cuales se produjeron deformaciones elásticas, el sólido no vuelve exactamente al estado termodinámico y de deformación que tenía antes de la aplicación de las mismas. A su vez los subtipos son:
Plástico puro, cuando el material "fluye" libremente a partir de un cierto valor de tensión.
Plástico con endurecimiento, cuando para que el material acumule deformación plástica es necesario ir aumentando la tensión.
Plástico con ablandamiento.
Comportamiento viscoso que se produce cuando la velocidad de deformación entra en la ecuación constitutiva, típicamente para deformar con mayor velocidad de deformación es necesario aplicar más tensión que para obtener la misma deformación con menor velocidad de deformación pero aplicada más tiempo. Aquí se pueden distinguir los siguientes modelos:
Visco-elástico, en que las deformaciones elásticas son reversibles. Para velocidades de deformaciones arbitrariamente pequeñas este modelo tiende a un modelo de comportamiento elástico.
Visco-plástico, que incluye tanto el desfasaje entre tensión y deformación por efecto de la viscosidad como la posible aparición de deformaciones plásticas irreversibles.
En principio, un sólido de un material dado es susceptible de presentar varios de estos comportamientos según sea el rango de tensión y deformación que predomine. Uno u otro comportamiento dependerá de la forma concreta de la ecuación constitutiva que relaciona parámetros mecánicos importantes como la tensión, la deformación, la velocidad de deformación y la deformación plástica, junto con parámetros como las constantes elásticas, la viscosidad y parámetros termodinámicos como la temperatura o la entropía.

1 comentario: